Q.P.Code: 23CS0905

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. III Year I Semester Regular Examinations December-2025 COMPUTER VISION & IMAGE PROCESSING

			COMPUTER VISION & IMAGE PROCESSING			
7	ime	: 3	Hours (Common to CSM & CAI)	3.5	90	
			PART-A	Max. M	arks:	70
			(Answer all the Questions $10 \times 2 = 20$ Marks)	8		-
	1	a	Define image sampling.	CO1	L1	2M -
		b	What is brightness transformation?	CO1		2M
		c	State any two edge detection operators.	CO2		
		d-	What is the purpose of image thresholding?	CO2		2M
		e	Define disparity.	CO3		2M
		f	What is intrinsic calibration of a camera?	CO3		2M
		g	What is a feature descriptor?	CO4		2M
		h	Expand CNN and write where it is used.	CO4		2M
		i	Define image compression ratio.	CO5		2M
	70.	j	Name any two applications of medical image processing.	CO5		2M
			PART-B	000		2111
*			(Answer all Five Units $5 \times 10 = 50$ Marks)			
		-	UNIT-I			100
	2	a	Explain sampling and quantization with a neat illustration.	CO1	L2	5M
		b	Describe the concepts involved in image restoration.	COI	L2	5M
	4)	27	OR	**********		
	3	a	A grayscale image has intensity values in range [0,255].	COI	L6	6M ·
			Propose a contrast stretching operation using piecewise formula.			
		b	Identify the major challenges that affect the restoration of noisy or	CO1	L3	4M
			distorted images		400	
			UNIT-II			
	4	а ъ	Describe Canny edge detection with its stages.	CO ₂	L2	5M
		D	Demonstrate step by step the Mean-Shift clustering algorithm.	CO2	L2	5M
	_		OR			
	5	a	A binary mask is given below:	CO ₂	L3	8M
			001101110001000			
		h	Apply erosion and dilation using a 3×3 square structuring element.			
		IJ	Explain morphological opening operates.	CO ₂	L2	2M_
	6		UNIT-III		T.	
	O	a	Explain stereo vision with epipolar geometry.	CO3	<u>L2</u>	5M
	100	υ	Discuss the camera calibration techniques that are essential for achieving	CO ₃	L2	5M
			accurate measurements in 3D reconstruction tasks.			
	7	a	Given two image frames described			
	′	а	Given two image frames, describe step-by-step the Lucas-Kanade optical flow estimation with assumptions.	CO ₃	L2	6M
		h ii	Explain the generation of 2D point alouds from the	3.11	*	
			Explain the generation of 3D point clouds from stereo camera images.	CO3	L2	4M
	8	Я	UNIT-IV Explain SURF descriptor computation.			
		b i	Compare Support Vector Machines (SVMs) and Decision Trees.	CO4	L2	6M
			overplane support vector retachines (5 vivis) and Decision Trees.	CO4	L3	4M
			8 4 4 4 4		Pa	ge 1 of 2

	а	Design an object recognition pipeline using CNN for detecting a specific	CO ₄	L3
		class of objects (e.g., computer).		
	b	Write a brief note on Random Forest classifiers.	C04	L2
		UNIT-V		
10	a	Classify types of image compression techniques with suitable examples.	CO5	14
	b	Describe how morphological operations support medical image analysis	CO5	L2
		OR		-
11	a	Propose a computer vision workflow including segmentation, feature extraction, and decision model.	CO5	L6
	b	Explain the underlying principles of lossy image compression.	CO5	L2

